Geographic Variation of Mercury and Other Elements in U.S. Coal

Jeffrey Quick¹, D. Tabet¹, S. Wakefield¹, R. Bon¹, T. Brill²; ¹ Utah Geological Survey, and ² Utah Division of Public Utilities, Salt Lake City, UT, USA Air Quality V
18 - 21 September 2005
Marriott Crystal Gateway
Arlington, VA

U.S. Department of Energy
National Energy Technology Laboratory
Agreement DE-FG26-03NT41901
Sara M. Pletcher, Manager

Objective Use available coal quality data to illustrate which coals can be used with existing technology to reduce mercury emissions.

Data sources

ICR 2 (1999) 25,825 records

<epa.gov/ttn/atw/combust/utiltox/utoxpg.html>

FERC 423 (1999) 19,507 records (also 2002) <eia.doe.gov/cneaf/electricity/page/ferc423.html>

CTRDB (1992 - 1999) 5,823 records <eia.doe.gov/cneaf/coal/ctrdb/database.html>

COALQUAL (1973 - 1989) 5,059 records Bragg, L.J., and others 1997, U.S. Geological Survey Open File Report 97-134.

MSHA (1999) 1,342 records <msha.gov/STATS/PART50/P50Y2K/A&I/1999/ caim1999.exe>

EIA 423 (2002) 584 records

<eia.doe.gov/cneaf/electricity/page/eia423.html>

EIA 906-920 (2004) 476 records

<eia.doe.gov/cneaf/electricity/page/eia906_920.html>

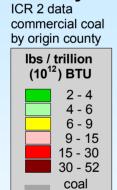
ICR 3 (1999) 240 records

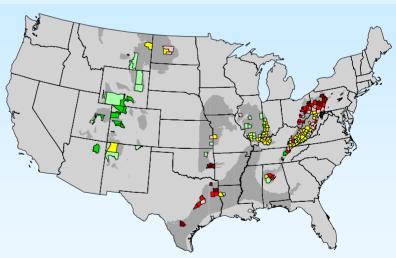
<epa.gov/ttn/atw/combust/utiltox/utoxpg.html>
and analysis of ICR 3 data by:

\$AIC (2003) cost doe gov/cost/E&W/P/mercury/pubs/

SAIC (2003) <netl.doe.gov/coal/E&WR/mercury/pubs/ DOE_Report_v120803.pdf>

ENSR (2003) <epa.gov/ttn/atw/combust/utiltox/final_ensr_multivar.pdf>
Roberson (2002) <epa.gov/ttn/atw/combust/utiltox/

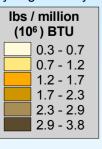

epavarifnl.doc>

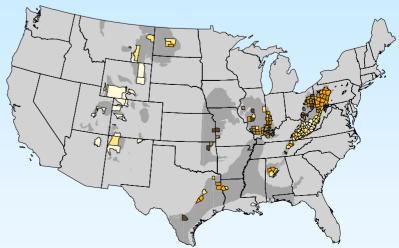

CRDB (1997)<eia.doe.gov/cneaf/coal/reserves/database.html>

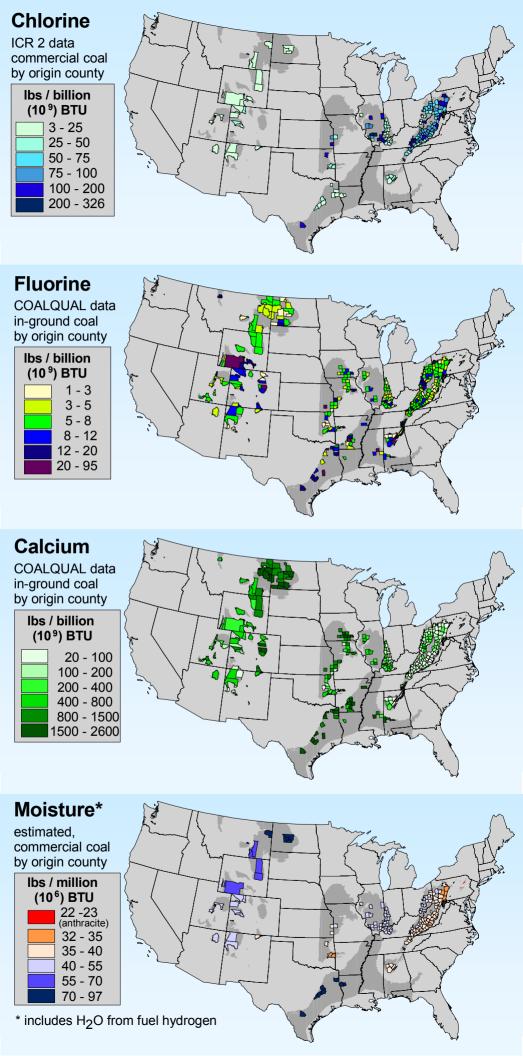
2)

Mercury

Coal quality maps

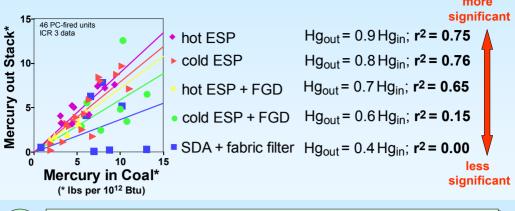


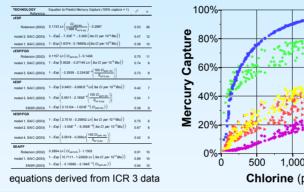


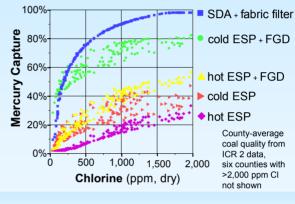

Sulfur

FERC 423 data commercial coal by origin county

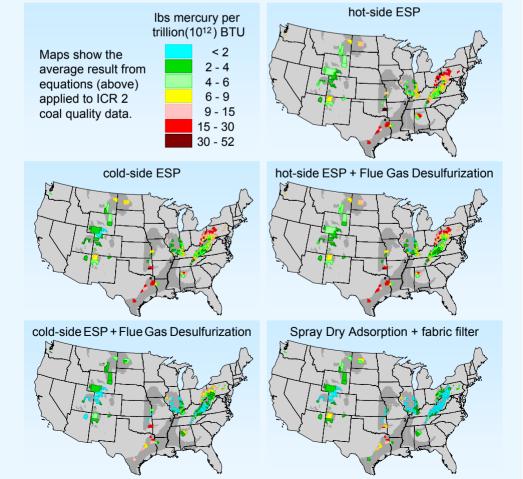
province





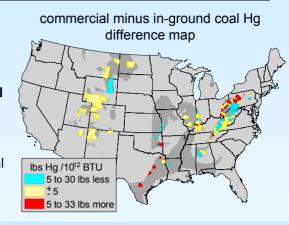

The significance of the coal mercury content depends on the emission control technology.

4

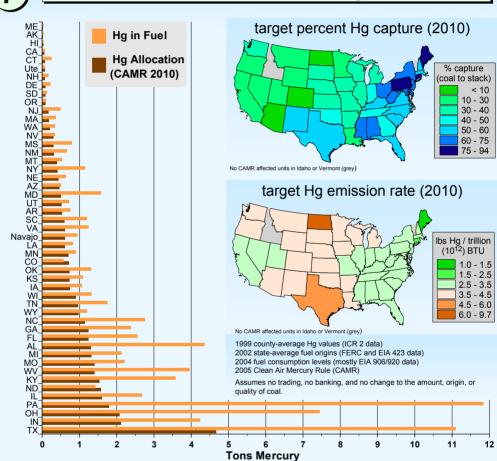

The average result of equations that predict mercury capture - applied to coal from 162 U.S. counties.

5)

Mercury emissions for existing technology by coal origin



Commercial U.S. coal contains less mercury than the in-ground coal but not everywhere!


- **11** lbs Hg/10¹² BTU **in-ground coal** (COALQUAL Hg data, CRDB tonnage)
- **8.3** lbs Hg/10¹² BTU **commercial coal** (ICR 2 Hg data, MSHA tonnage)

Red areas show where commercial coal has more mercury than the in-ground coal resource.

7

2010 CAMR emission targets

Ways to reduce mercury emissions

500 to 1,000 ppm fuel chlorine: cold-side ESP + FGD

SDA + fabric-filter

low-mercury coal: hot-side ESP

cold-side ESP

selective mining or washing: parts of Pennsylvania,

Ohio, and Texas

website: http://geology.utah.gov/emp/mercury/index.htm comments, corrections, questions, ideas, data... welcome!

This poster was prepared with the support of the U.S. Department of Energy, under Award No. DE-FG26-03NT41901. However, any opinions, findings, conclusions, or recommendations expressed herein are those of the author and do not necessarily reflect the views of the DOE. jeffreyquick@utah.gov

